Persistencia microbiana de importancia intrahospitalaria en uniformes clínicos a raíz de la pandemia de COVID-19

Contenido principal del artículo

M.S. Kappes
https://orcid.org/0000-0001-8101-3898

Resumen

Introducción: El lavado de manos es la medida que más impacta en la prevención de infecciones asociadas a la atención en salud. Hay poca evidencia del rol que cumplen los uniformes clínicos como vector en transmisión cruzada de infecciones en hospitales.


Método: Se realizó una revisión rápida con criterios Cochrane y lista de chequeo PRISMA con acceso a bases de datos PubMed, Ovid, ProQuest y Google Académico en español e inglés del 2010-2020. El objetivo establecido fue buscar evidencia sobre la persistencia de microorganismos de importancia intrahospitalaria en uniformes clínicos, a raíz de la actual pandemia de COVID-19. El análisis crítico de los artículos se realizó con ayuda de herramientas del Joanna Briggs Institute (checklist estudios analíticos, serie de casos, texto y opinión, ensayos clínicos controlados y revisiones sistemáticas).


Resultados: En la búsqueda inicial se obtuvieron 1703 artículos, de los cuales fueron seleccionados 8. Se encuentra evidencia de presencia de microorganismos en uniformes clínicos. Las zonas más contaminadas son bolsillos y mangas. MERS-COV y SARS-COV han mostrado persistencia en aluminio hasta 48 horas, madera 4 días, papel hasta 24 horas. En género, el SARS-COV-2 ha demostrado una persistencia de 2 días.


Conclusiones: Existe evidencia de la persistencia de microrganismos bacterianos y virales en uniformes clínicos. Los lugares más contaminados son bolsillos y mangas. Al contacto está demostrada la presencia de microrganismos en uniformes clínicos horas después. Se deben implementar medidas que tomen en cuenta el rol potencial de transmisión de patógenos durante el uso de uniformes clínicos en hospitales.

Detalles del artículo

Dimensions citation

MÉTRICAS

 

Citas

Vergara T, Fica A. Estudio de costo de las infecciones del torrente sanguíneo asociadas a catéter vascular central en pacientes adultos en Chile. Rev. chil. infectol. 2015; 32(6): 634-8. http://dx.doi.org/10.4067/S0716-10182015000700004

Saavedra CH, Ordóñez KM, Díaz JA. Impacto de la infección nosocomial en un hospital de Bogotá (Colombia): efectos en mortalidad y costos. Rev. chil. infectol. 2015; 32(1): 25-9. http://dx.doi.org/10.4067/S0716-10182015000200004

Kruk ME, Gage AD, Joseph NT, Danaei G, García-Saizó S, Salomon JA. Mortality due to low-quality health systems in the universal health coverage era: A systematic analysis of amenable deaths in 137 countries. Lancet. 2018; 392(10160): 2203-12. https://doi.org/10.1016/S0140-6736(18)31668-4

Callejas-Díaz A, Fernández-Pérez C, Ramos-Martínez A, Múñez-Rubio E, Sánchez-Romero I, Vargas -Núñez JA. Impacto de la bacteriemia por Pseudomonas aeruginosa en un hospital de tercer nivel: mortalidad y factores pronósticos. Med. clín. 2019; 152(3): 83-9. https://doi.org/10.1016/j.medcli.2018.04.020

Hollenbeak CS, Schilling AL. The attributable cost of catheter-associated urinary tract infections in the United States: A systematic review. Am J Infect Control. 2018; 46(7): 751-7. https://doi.org/10.1016/j.ajic.2018.01.015

Peña VH, Espinosa A. Modelamiento predictivo para el cálculo de demanda de camas hospitalarias de cuidados intensivos a nivel nacional en el marco de la pandemia por COVID-19. Medwave. 2020; 20(9). https://doi.org/10.5867/medwave.2020.09.8039

Oliveira-da Costa Lino D, Barreto R, de Souza FD, Mota-de Lima CJ, Bezerra-da Silva Junior G. Impact of lockdown on bed occupancy rate in a referral hospital during the COVID-19 pandemic in northeast Brazil. Braz J Infect Dis. 2020; 24(5): 466-9. https://doi.org/10.1016/j.bjid.2020.08.002

Garcia-Vidal C, Sanjuan G, Moreno-García E, Puerta-Alcalde P, Garcia-Pouton N, Chumbita M. et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin Microbiol Infect. 2021; 27(1): 83-8. https://doi.org/10.1016/j.cmi.2020.07.041

Zhou Q, Gao Y, Wang X, Liu R, Du P, Wang X, et al. Nosocomial infections among patients with COVID-19, SARS and MERS: A rapid review and meta-analysis. Ann Transl Med. 2020; 8(10): 1-14. https://doi.org/10.21037/atm-20-3324

Martos-Cabrera MB, Mota-Romero E, Martos-García R, Gómez-Urquiza JL, Suleiman-Martos N, Albendín-García L, et al. Hand hygiene teaching strategies among nursing staff: A systematic review. Int J Environ Res Public Health. 2019; 16(17): 1-13. https://doi.org/10.3390/ijerph16173039

Ambrosch A, Wahrburg K, Klawonn F. Bacterial load and pathogenic species on healthcare personnel attire: Implications of alcohol hand-rub use, profession, and time of duty. J Hosp Infect. 2019; 101(4): 414-21. https://doi.org/10.1016/j.jhin.2018.10.017

Reddy SC, Valderrama AL, Kuhar DT. Improving the use of personal protective equipment: Applying lessons learned. Clin Infect Dis. 2019; 69(Suppl 3): S165-S170. https://doi.org/10.1093/cid/ciz619

Ağalar C, Öztürk-Engin D. Protective measures for COVID-19 for healthcare providers and laboratory personnel. Turk J Med Sci. 2020; 50(SI-1): 578-84. https://doi.org/10.3906/sag-2004-132

Garritty C, Gartlehner G, Nussbaumer-Streit B, King VJ, Hamel C, Kamel C, et al. Cochrane rapid reviews methods group offers evidence-informed guidance to conduct rapid reviews. J Clin Epidemiol. 2021; 130: 13-22. https://doi.org/10.1016/j.jclinepi.2020.10.007

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. BMJ. 2009; 339: 1-27. https://doi.org/10.1136/bmj.b2700

Lockwood C, Porritt K, Munn Z, Rittenmeyer L, Salmond S, Bjerrum M, et al. Chapter 2: Systematic reviews of qualitative evidence. In: Aromataris E, Munn Z (Eds.). JBI Manual for Evidence Synthesis. EE.UU.: JBI; 2020. https://doi.org/10.46658/JBIMES-20-03

Chan ST, Khong PCB, Wang W. Psychological responses, coping and supporting needs of healthcare professionals as second victims. Int Nurs Rev. 2016; 64(2): 242-62. https://doi.org/10.1111/inr.12317

Bearman G, Bryant K, Leekha S, Mayer J, Munoz-Price LS, Murthy R, et al. Healthcare personnel attire in non-operating-room settings. Infect Control Hosp Epidemiol. 2014; 35(2): 107-21. https://doi.org/10.1086/675066

Munoz-Price LS, Arheart KL, Mills JP, Cleary T, Depascale D, Jimenez A, et al. Associations between bacterial contamination of health care workers' hands and contamination of white coats and scrubs. Am J Infect Control. 2012; 40(9): e245-8. https://doi.org/10.1016/j.ajic.2012.03.032

Goyal S, Khot SC, Ramachandran V, Shah KP, Musher DM. Bacterial contamination of medical providers' white coats and surgical scrubs: A systematic review. Am J Infect Control. 2019; 47(8): 994-1001. https://doi.org/10.1016/j.ajic.2019.01.012

Haun N, Hooper-Lane C, Safdar N. Healthcare personnel attire and devices as fomites: A systematic review. Infect Control Hosp Epidemiol. 2016; 37(11): 1367-73. https://doi.org/10.1017/ice.2016.192

Chen YC, Lin CF, Rehn YF, Chen JC, Chen PY, Chen CH, et al. Reduced nosocomial infection rate in a neonatal intensive care unit during a 4-year surveillance period. J Chin Med Assoc. 2017; 80(7): 427-31. https://doi.org/10.1016/j.jcma.2017.02.006

Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020; 104(3): 246-51. https://doi.org/10.1016/j.jhin.2020.01.022

Aboubakr HA, Sharafeldin TA, Goyal SM. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound Emerg Dis. 2021; 68(2): 296-312. https://doi.org/10.1111/tbed.13707

Wiener-Well Y, Galuty M, Rudensky B, Schlesinger Y, Attias D, Yinnon AM. Nursing and physician attire as possible source of nosocomial infections. Am J Infect Control. 2011; 39(7): 555-9. https://doi.org/10.1016/j.ajic.2010.12.016

Liu S, Wang M, Wang G, Wu X, Guan W, Ren J. Microbial characteristics of nosocomial infections and their association with the utilization of hand hygiene products: A hospital-wide analysis of 78,344 cases. Surg Infect. 2017; 18(6): 676-83. https://doi.org/10.1089/sur.2017.037

Jordan-Garcia I, Esteban-Torné E, Bustinza-Arriortua A, de Carlos-Vicente JC, García-Soler P, Concha-Torre JA, et al. Trends in nosocomial infections and multidrug-resistant microorganisms in spanish pediatric intensive care units. Enferm. infecc. microbiol. clín. 2016; 34(5): 286-92. https://doi.org/10.1016/j.eimc.2015.07.010

Giacobbe DR, Battaglini D, Ball L, Brunetti I, Bruzzone B, Codda G, et al. Bloodstream infections in critically ill patients with COVID-19. Eur J Clin Invest. 2020; 50(10): 1-8. https://doi.org/10.1111/eci.13319

Burden M, Cervantes L, Weed D, Keniston A, Price CS, Albert RK. Newly cleaned physician uniforms and infrequently washed white coats have similar rates of bacterial contamination after an 8-hour workday: A randomized controlled trial. J Hosp Med. 2011; 6(4): 177-82. https://doi.org/10.1002/jhm.864

World Health Organization. Home care for patients with COVID-19 presenting with mild symptoms and management of their contacts. Geneva: WHO; 2020. https://bit.ly/3bHK0P0

Ajami NJ, Wong MC, Ross MC, Lloyd RE, Petrosino JF. Maximal viral information recovery from sequence data using VirMAP. Nat Commun. 2018; 9(1): 1-9. https://doi.org/10.1038/s41467-018-05658-8

Rampelli S, Soverini M, Turroni S, Quercia S, Biagi E, Brigidi P, et al. ViromeScan: A new tool for metagenomic viral community profiling. BMC Genomics. 2016; 17: 1-9. https://doi.org/10.1186/s12864-016-2446-3

Zapata-Giraldo J, Botero LE, Mejía ML, Escobar-Mora N, Ortiz-Trujillo I, Galeano BJ. Textiles funcionales como barrera de protección ante infecciones asociadas a la atención en salud. Revista EIA. 2018; 15(29): 13-29. https://doi.org/10.24050/reia.v15i29.1166

Gomes-Rodrigues A, Romano-de Oliveira Gonçalves PJ, Ottoni CA, de Cássia-Ruiz R, Morgano MA, De Araújo WL, et al. Functional textiles impregnated with biogenic silver nanoparticles from Bionectria ochroleuca and its antimicrobial activity. Biomed Microdevices. 2019; 21(3): 56. https://doi.org/10.1007/s10544-019-0410-0

Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci. 2019; 20(2): 1-47. https://doi.org/10.3390/ijms20020449